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Abstract
Varroosis is the disease caused by the ectoparasitic mite Varroa destructor, one of the most destructive diseases of honeybees. In
Spain, there is great concern because there are many therapeutic failures after acaricide treatments intended to control varroosis
outbreaks. In some of these cases it is not clear whether such failures are due to the evolution of resistance. Therefore, it is of high
interest the development of methodologies to test the level of resistance in mite populations. In this work, a simple bioassay
methodology was used to test whether some reports on low efficacy in different regions of Spain were in fact related to reduced
Varroa sensitivity to the most used acaricides. This bioassay proved to be very effective in evaluating the presence of mites that
survive after being exposed to acaricides. In the samples tested, the mortality caused by coumaphos ranged from 2 to 89%; for
tau-fluvalinate, it ranged from 5 to 96%. On the other hand, amitraz caused 100%mortality in all cases. These results suggest the
presence of Varroa resistant to coumaphos and fluvalinate in most of the apiaries sampled, even in those where these active
ingredients were not used in the last years. The bioassay technique presented here, either alone or in combination with other
molecular tools, could be useful in detecting mite populations with different sensitivity to acaricides, which is of vital interest in
selecting the best management and/or acaricide strategy to control the parasite in apiaries.
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Introduction

The mite Varroa destructor (Anderson and Trueman) is one of
the most prevalent bee pathogens worldwide and the causative
agent of varroosis, one of the most destructive diseases of hon-
eybees (Rosenkranz et al. 2010). It is an ectoparasite that affects

immature as well as adult bees by direct feeding mainly on their
fat body (Ramsey et al. 2019) and haemolymph (Annoscia et al.
2019), but also vectoring a set of viruses that cause important
physiological alterations to the bees (Shen et al. 2005; Di Prisco
et al. 2011; Martin and Brettell 2019). In the absence of an
effective management program, the parasitized colony eventual-
ly collapse in no more than 2 years (Rosenkranz et al. 2010).
There are several alternative treatments to control the mite, but,
in some countries, beekeepers usually rely on “hard acaricides”
based on pyrethroids (tau-fluvalinate and flumethrin), couma-
phos, or amitraz, which have been used extensively for decades.
This is because they are very effective removing the mites from
the hives, but also because they are easy to apply and show
relatively low toxicity to bees (Rosenkranz et al. 2010). As in
other arthropods, this intensive and repetitive use of pesticides
has led to the evolution of resistance in the populations (Milani
1995; Sammataro et al. 2005; González-Cabrera et al. 2018;
Mitton et al. 2018; Rinkevich 2020), making very difficult the
control of the parasite. It is known that arthropod species, and
mites in particular, have evolved resistance to many pesticides
and that this trait may spread swiftly in very few generations
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(Van Leeuwen andDermauw 2016). Recent studies have shown
clear evidence of the mechanism of resistance to synthetic pyre-
throids. Indeed, a substitution of an amino acid located in the
proposed binding site for these molecules has been associated
with the resistance recorded in Europe (González-Cabrera et al.
2013) and the USA (González-Cabrera et al. 2016). This infor-
mation was further used to develop a high throughput method-
ology to accurately assess the frequency of resistant mites in the
populations. However, so far there is still no information avail-
able regarding the mechanism of resistance to other acaricides
like coumaphos or amitraz, also heavily used against the mite.

In recent years, the beekeeping sector in Spain has reported
a significant increase in the outbreaks of varroosis. In many
cases, beekeepers have linked these outbreaks to therapeutic
failures of the treatments used for Varroa control. However,
this correlation has not been confirmed by laboratory assays or
by official reports to the Spanish regulator (AEMPS—
Spanish acronym for the Agency for Medicines and Sanitary
Products). It seems reasonable to associate these reports of
therapeutic failures with the presence of mites resistant to
the acaricides in the hives. To test this hypothesis, and in
absence of high-throughput methodologies to screen popula-
tions for the presence of mites resistant to coumaphos and
amitraz, we have developed a simple bioassay methodology
to analyse, under controlled laboratory conditions, whether
the reports on low efficacy are related to reduced Varroa sen-
sitivity to these acaricides. This would help to select the most
appropriate veterinary medicaments for the adequate control
of varroosis in these hives, a treatment that is mandatory in
Spain according to the Royal Decree RD608/2006.

Material and methods

Mites

Varroa destructor females were collected from nine apiaries
located in seven Spanish provinces: La Coruña, Orense,
Toledo, Burgos, Guadalajara, Albacete and Badajoz (Fig. 1).
The apiaries, except for the two fromGuadalajara (experimen-
tal apiaries at CIAPA, Marchamalo, Guadalajara), showed
high level of Varroa infestation after application of acaricidal
treatments, that was interpreted as therapeutic failure
(Table 1). In the experimental apiaries at CIAPA, the control
of varroosis is carried out using an integrated control approach
and no therapeutic failures have been detected after treatments
with acaricides. At least two combs with capped brood per
hive and apiary were collected and shipped to the CIAPA
laboratory by express courier. They arrived in less than 24 h
after collection.

Once in the laboratory, the combs were kept for 24 h in an
incubator at 35 °C (Memmert ® IPP500, 0.1 °C) to mimic the
conditions in the hives and to ensure a perfect state of the

mites for the bioassay. The combs sampled at CIAPA
(Guadalajara) were collected from the hives, transported di-
rectly to the laboratory and kept in the same conditions men-
tioned above.

Bioassays

Bioassays were conducted with strips of Checkmite+® (cou-
maphos a.i., Bayer Hispania, S.L.) Apitraz® (amitraz a.i.,
Laboratorios Calier, S.A.) and Apistan® (tau-fluvalinate a.i.,
Vita Europe). Parasitized bee pupae up to 4–6 days old (white
to pink eyes) were extracted from the brood cells using a pair
of soft tweezers. The pupae were randomly sampled over the
entire brood surface until the necessary number of adult moth-
er varroas was obtained. The female mother mites were col-
lected with a soft paint brush and deposited onto a wet filter
paper. Only adult V. destructor females were used in the tests
to limit the interference of age in the bioassay results (Mathieu
and Faucon 2000; Kamler et al. 2016).

A piece of approximately 4 cm long of each acaricide strip
was placed into a 5.5-cm Petri dish. Each strip piece main-
tained its original width (2.5 cm for Checkmite+®, 4 cm for
Apitraz® and 3.0 cm for Apistan®). Given the different
amount of active ingredient impregnated in the strips of each
product, the actual concentration was 13.6 mg/cm2, 2.2 mg/
cm2 and 1.9 mg/cm2 for Checkmite+®, Apitraz® and
Apistan®, respectively. The mites collected (15 mites per rep-
licate, 3 replicates for each acaricide substance) were laid on
top of the strip and their movements weremonitored to control
that they remain on top of the strip for at least 5 min. The dish
was sealed with Parafilm® and holed with an entomological
needle to allow aeration. The Petri dishes were incubated for
1 h at 34 °C, 90% RH in an incubator (Memmert ® HCP240.
Precision: 0.1 °C and 0.5% RH). After 1 h, the strip was
removed and the dish with the mites was incubated for 3 more
hours at 34 °C, 90% RH. The controls were mites treated the
same way but without acaricide strips. After the incubation
time was completed, mortality was evaluated by assessing
the movement of mites by probing with a fine paint brush.

Results and discussion

The devastating effect of Varroa parasitism on honeybee
health is threatening the sustainability of beekeeping world-
wide. A small set of synthetic acaricides based on organo-
phosphates, pyrethroids or formamidines have been widely
and intensively used against mites in the last decades resulting
in the evolution of resistance to all of them in the populations
(Rosenkranz et al. 2010), although amitraz (formamidine) re-
mains largely effective (Evans and Cook 2018).

In our experiment, Varroa mites sampled from different
Spanish locations displayed high variability in the level of
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mortality after exposition to the acaricides commonly used to
treat the colonies (Table 1). For coumaphos, Varroa survival
ranged from 98 (Madridejos) to 11% (Marchamalo) (Fig. 1a)
and for tau-fluvalinate from 95 (Bande) to 4% (Marchamalo)
(Fig. 1b), and finally, for amitraz, survival was 0% in all cases
(Fig. 1c). The control mites showed a very high survival,
between 100 and 98% (Table 1), higher than that reported
before for other bioassay methodologies (Kamler et al. 2016;
Stara et al. 2019). The low mortality in the controls evidences
the reliability of our methodology, allowing the correct assess-
ment of the acaricide effect on the mortality of Varroa as
previously reported by Milani and Della Vedova (2002).
Therefore, mites surviving after the exposure to acaricides
could be considered as potentially resistant. In this sense, the
results obtained suggest the presence of Varroa resistant to
coumaphos and fluvalinate in many of the apiaries sampled
for this study.

Coumaphos is an organophosphate-based acaricide used
globally for decades (Ritter 1985; Kamrin 1997). In beekeep-
ing, the use of coumaphos for the control of Varroa began
towards the 1980s of the last century, being one of the alter-
natives to the use of pyrethroids, especially after the detection
of resistance to fluvalinate in many locations (Milani 1995;
Elzen et al. 2000). However, the intensive treatment regime
also resulted in Varroa resistance in both laboratory assays
and field trials (Spreafico et al. 2001; Kanga et al. 2010). In
our experiment, mites coming from colonies previously treat-
ed with coumaphos (Table 1) showed a high survival rate to
this acaricide (80 to 98%). These results are in agreement with
the therapeutic failures reported by beekeepers in those apiar-
ies and could be explained by the selection of resistant mites
that survived the selection pressure of the acaricide. On the
other hand, the presence of mites that survived in the bioassay
but coming from hives that were not treated with coumaphos
last year is a relevant fact (11 to 51% of surviving mites).
Especially interesting are the results obtained with Varroa
sampled in the experimental apiary at CIAPA (mite survival
around 11 to 15%) where the colonies had not been treated
with coumaphos for at least 5 years, which suggests the pres-
ence of a significant rate of resistant mites despite the time
elapsed without coumaphos treatments. These results are in
agreement with those reported by Maggi et al. (2010) and
Mitton et al. (2018) in South America, suggesting that couma-
phos resistance is maintained over time, probably associated

�Fig. 1 Sampling locations and results of the bioassays with each
acaricide, expressed as percentage. a Results obtained with coumaphos
(yellow: survivors, blue: dead). b Results obtained with tau-fluvalinate
(yellow: survivors, pink: dead). c Results obtained with amitraz (green:
dead). Locations: 1, Culleredo (La Coruña); 2, Castrelo do Miño
(Orense); 3, Bande (Orense); 4, Salas de los Infantes (Burgos); 5,
Marchamalo (Guadalajara); 6, Madridejos (Toledo); 7, Herrera del
Duque (Badajoz); 8, Barrax (Albacete)
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with a remnant selection pressure due to the presence of res-
idues in the hive matrices, undeclared treatments, etc. A more
in-depth research is needed to investigate the dynamics of
coumaphos resistance in V. destructor and the possibility of
resistance reversion.

Pyrethroids acaricide/insecticides are nerve poisons that
were introduced around the 1970s for pest control (Elliott
et al. 1978). Historically, tau-fluvalinate has been the acaricide
of choice in apiculture for Varroa control due to their efficacy
and low toxicity to bees. By the end of the 1980s most of the
worldwide control of Varroa relied on this active substance
(Trouiller 1998). This intensive treatment regime led to the
evolution of resistance, first detected in Italy in the 1990s
(Milani 1995), but spread to many locations afterwards. In
our study, none of the beekeepers declared to have used tau-
fluvalinate (or other pyrethroid) as an acaricidal treatment in
the last year. However, our data showed that a significant
number of mites survived the treatment with this acaricide
(Table 1; Fig. 1b). The most extreme cases were detected in
samples from La Coruña and Orense, where 55–95% of the
mites exposed to tau-fluvalinate survived after the bioassay. In
the rest of the apiaries studied, survival ranged from 4
(Guadalajara) to 24% (Badajoz) (Table 1; Fig. 1b). Again,
the result obtained in our experimental hives at CIAPA, which
have not received acaricidal treatment with fluvalinate in the
last 4 years, is relevant. The mites from this apiary were the
most sensitive to tau-fluvalinate. In this sense, previous data
suggested a decrease in Varroa resistance to pyrethroids over
a 3-year period (Milani and Della Vedova 2002). Similar re-
sults were obtained in a Varroa population from Florida,
USA, where a significant increase in susceptibility was ob-
served short after the treatment was discontinued (Elzen and
Westervelt 2004). Milani and Della Vedova (2002) hypothe-
sized that resistance reversion could happen due to reproduc-
tive fitness cost associated with pyrethroid resistance. In this

line, González-Cabrera et al. (2018) also reported a rapid de-
crease in the frequency of pyrethroid-resistant Varroa once
the treatment was discontinued and also suggested a lower
fitness of resistant mites, which is a common trait in species
sharing the same mechanism of resistance than that described
in Varroa resistant to pyrethroids (Anstead et al. 2007).
Hence, it is likely that the high frequency of Varroa surviving
after exposure to tau-fluvalinate in our bioassays was caused
by a strong selection pressure maintained over time in the
hives of origin. Indeed, the selection pressure that would allow
the continuous presence of resistant mites in the hives could
be due to the direct and repeated application of acaricide treat-
ments (like in the hives of the present study treated with cou-
maphos) but also, as we suggested previously, it could be due
to the constant presence of acaricide residues inside the hives
(Onstad 2013).

Amitraz was the acaricide that showed the best results kill-
ing V. destructor. Amitraz is a formamidine acaricide that was
first synthesized in 1969 and has since been used to control
ticks on cattle (Hollingworth 1976). It is also used to treat
honeybee mites as an alternative to pyrethroids. The evolution
of resistance to amitraz is a serious problem, although it re-
mains in use for the control of ticks, mites and fleas (Kita et al.
2017). The resistance of Varroa to amitraz has been also de-
scribed, although fewer cases were reported compared with
other acaricides (Elzen et al. 1999; Maggi et al. 2010; Kamler
et al. 2016; Rinkevich 2020). Indeed, Varroa control failures
due to amitraz resistance continue to be rare despite the first
reports of amitraz resistance nearly 20 years ago (Elzen et al.
1999), suggesting that the selection pressure should be lower
than that exerted by the other acaricides (probably associated
with the metabolic fate of amitraz, see below). In our study, all
mites exposed to amitraz in the bioassay died after treatment,
regardless the treatment regime of the colony (Table 1). This
suggests the absence of resistant mites in the hives studied,

Table 1 Results obtained in the
bioassay and description of the
treatments applied in each of the
apiaries. Last Varroa treatment
applied (active product) in each
apiary and surviving Varroa
mites after conducting the
bioassay

Locality (Province) Last treatment (a.i) Surviving Varroa (%) (mean ± SD)

Coumaphos tau-
Fluvalinate

Amitraz Control

Culleredo (La Coruña) Checkmite+®
(coumaphos)

91 ± 3 84 ± 4 0 100

Castrelo do Miño (Orense) 95 ± 4 55 ± 4 0 98 ± 4

Bande (Orense) 91 ± 3 95 ± 4 0 100

Madridejos (Toledo) 98 ± 4 20 ± 7 0 100

Salas de los Infantes
(Burgos)

80 ± 0 15 ± 4 0 98 ± 4

Marchamalo (Guadalajara) Apitraz® (amitraz) 11 ± 3 11 ± 3 0 100

Marchamalo (Guadalajara) 15 ± 4 4 ± 4 0 100

Barrax (Albacete) 35 ± 8 20 ± 7 0 100

Herrera del Duque
(Badajoz)

51 ± 4 24 ± 3 0 100
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even in our experimental apiary at CIAPA, where amitraz has
been used as an acaricide treatment for 4 consecutive years
once a year. In the apiaries of Badajoz and Albacete, bee-
keepers reported a possible therapeutic failure of amitraz treat-
ment due to the high number of Varroa observed after treat-
ment. However, our data indicates that the acaricide was toxic
for these mites. Similar discrepancy of results has been de-
scribed before (Subirana 1999) and could be explained by
other factors as either errors in the application of treatments,
reinfestations or the presence of other pathogens that may be
altering the behaviour of the honeybee colony and the treat-
ment efficacy (Botías et al. 2012).

Pesticides may accumulate in the different hive matrices
according to their physico-chemical properties, often finding
higher levels of varrooacides residues in beeswax and bee-
bread than in honey (Johnson et al. 2010). In Spain, lipophilic
compounds like coumaphos and tau-fluvalinate are frequently
detected in beeswax and beebread at high concentrations
(Bernal et al. 2010; Calatayud-Vernich et al. 2018; Alonso-
Prados et al. 2020). In this sense, Medici et al. (2015) demon-
strated a positive correlation between coumaphos residues in
beeswax and the level of Varroa resistance to this acaricide.
Thus, the results reported in our study could be understood
under the light of this scenario with a significant presence of
mites resistant to coumaphos and tau-fluvalinate in colonies
with no obvious treatment with these acaricides. In addition,
Fulton et al. (2019) suggested a transfer of tau-fluvalinate
from beeswax into larvae and adult bees as an important route
of exposure and bioaccumulation of this acaricide. This way,
Varroa would get in contact with the acaricide while feeding
on the bees. On the other hand, amitraz itself does not accu-
mulate in the hives because it is quickly degraded to N2-(2,4-
dimethylphenyl)-N1-methyformamidine (DPMF) and N-(2,4-
dimethyl-phenyl)-formamide (DMF) that can be detected as
residues (Mullin et al. 2010; Lozano et al. 2019; Murcia
Morales et al. 2020). Although both amitraz and DPMF are
agonists of the octopamine receptor, the metabolite DPMF is
more potent than amitraz (Kita et al. 2017). In contrast to the
lipophilic compounds mentioned above, DPMF is a polar
compound and does not tend to accumulate in wax (Lozano
et al. 2019). This would suggest that the selection pressure
they would exert on Varroa populations would not be so
strong than that exerted by lipophilic compounds.

Overall, our data is a showcase of the situation in several
Spanish locations regarding the efficacy of acaricides and
management strategies for controlling V. destructor. In this
scenario it is very important to screen populations before treat-
ment to determine the frequency of resistant mites to select the
best management strategy. The bioassay technique presented
here as well as the TaqMan® (González-Cabrera et al. 2013)
or PCR-RFLP (Millán-Leiva et al. 2018) assays described
before for detecting mites resistant to pyrethroids are straight-
forward methodologies that will provide this information to

the beekeeping community so they can take an informed and
scientific-based decision on the most convenient way to man-
age the parasite.
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